In onze testmethode voor processorkoelers lees je uitgebreider hoe wij cpu-koelers testen. Op deze pagina geven we er een kort overzicht van.
De test van een processorkoeler begint bij Tweakers met een geluidsmeting. Bij het testen van cpu-koelers zijn we vooral geïnteresseerd in de efficiëntie: hoe verhouden de koelprestaties zich tot de geluidsproductie? Een koeler die goede prestaties levert, maar extreem veel lawaai produceert, is immers minder aantrekkelijk dan een model dat deze koelprestaties benadert bij een veel lager geluidsniveau. Om een gelijk speelveld te creëren, testen we alle koelers eerst op geluidsproductie, met een Larson Davis 831C-geluidsmeter gekoppeld aan een 378A04-microfoon die is voorzien van een voorversterker. Daarmee kunnen we nauwkeurig meten. De meter heeft een lage ruisvloer van 5,5dB(A). Vanwege onvermijdelijk omgevingsgeluid is de ruisvloer van onze geluidsarme ruimte ongeveer 10dB(A). Om een veilige marge te nemen, hanteren we 12dB(A) als ondergrens.
In onze geluiddichte kamer meten we bij processorkoelers op 50cm afstand wat de geluidsproductie is als de ventilator op volle snelheid draait, oftewel de maximale fanduty via pwm. Vervolgens noteren we bij welk toerental de ventilator 30dB(A) en 20dB(A) produceert, net als bij onze vorige testmethode. We hebben voor deze waarden gekozen omdat 30dB(A) overeenkomt met de gemiddelde geluidsdruk in een huiskamer. De lagere waarde van 20dB(A) ligt precies 10dB(A) daaronder, wat het menselijk gehoor ervaart als een halvering of verdubbeling van het geluid. Ten slotte proberen we de ventilator van een processorkoeler ook nog 15dB(A) te laten produceren. Als de ventilator daartoe (stabiel) in staat is, nemen we ook de koelprestaties voor dit allerlaagste, praktisch onhoorbare geluidsniveau mee. Deze laatste test is voor de echte stiltefanaten bedoeld en zal voor de gemiddelde gebruiker waarschijnlijk minder relevant zijn. Uiteraard kunnen niet alle koelers aan al deze tests meedoen; sommige zijn daar ofwel te luid ofwel te stil voor, of de temperatuur loopt simpelweg te ver op om de test veilig op het gekozen toerental te kunnen voltooien.
Vermogenstest
Onze nieuwe testopstelling is opgebouwd rondom een zelfontworpen pcb waarop een keramische vermogensweerstand van Bach RC is geplaatst. Deze weerstand meet 14 bij 22mm, wat een oppervlak van 308mm² betekent. Net als bij onze vorige testmethode kiezen we ook nu voor vermogensweerstanden in plaats van een echte processor als warmtebron. Dit doen we omdat we hiermee veel nauwkeuriger de vermogensafgifte kunnen bepalen dan met een echt systeem. Zelfs met alle turbofunctionaliteiten uitgeschakeld en met vaste spanningen heeft een echt systeem nog steeds fluctuaties in de daadwerkelijke vermogensafgifte, aangestuurd door de vele sensors op een moderne processor.
We gebruiken twee Siglent SPS5042X-labvoedingen in serie om het gewenste vermogen te genereren voor de weerstand onder de processorkoeler. We gebruiken een ATmega32U4-microcontroller gekoppeld aan een MAX31855-thermokoppelversterker, waaraan een thermokoppel zit om de temperatuur te meten. Om de ventilator(s) op de processorkoeler aan te sturen, gebruiken we een zelfgemaakte pwm-controller, die eveneens gebaseerd is op de ATmega32U4-microcontroller en die we ook gebruiken voor onze ventilatortestmethode.
Bij onze nieuwe testopstelling monteren we processorkoelers met de meegeleverde mounting bedoeld voor Intels LGA 1700/1851-socket. Elke koeler wordt gemonteerd bovenop een originele heatspreader van een Intel LGA 1700-processor. Onder deze heatspreader is de keramische vermogensweerstand geplaatst. Om de montage van koelers zo consistent mogelijk te laten zijn en om de heatspreader zo vlak mogelijk te houden, gebruiken we als extra versteviging de Thermal Grizzly 13th/14th Gen CPU Contact Frame van der8auer. Als koelpasta tussen de heatspreader en de betreffende processorkoeler gebruiken we altijd Gelid GC-Extreme.
Warmtetest
Voor de warmtetests met processorkoelers blijven we onze huidige testkamer gebruiken. Deze bestaat uit een geïsoleerde box met een testcompartiment van 55x55x28cm. Aan de voorzijde van dit compartiment zitten drie Phanteks PH-F120T30-ventilators die lucht aanvoeren, terwijl aan de achterzijde één F120T30 is geplaatst. In een gevouwen luchtkanaal aan de voorzijde van de kast zijn twee Selfa-warmte-elementen van 400W aangebracht, elk voorzien van een ventilator. Vlak voor de ingang van de testkamer is een temperatuursensor aangebracht die meet hoe warm de lucht is die de testkamer wordt ingeblazen. Door middel van een closed-loopsysteem met een Rex-c700-pid-controller kunnen we de temperatuur zeer constant houden. De pid-controller meet namelijk continu wat de temperatuur van de aangevoerde lucht is, waarna de controller indien noodzakelijk extra warmte kan laten opwekken door de warmte-elementen. Op deze manier kunnen we de temperatuur in de warmtebox nauwkeurig aansturen en heel constant houden.
Om verschillende redenen hebben we bij onze tests gekozen voor een luchttemperatuur van 35 graden. Ten eerste zijn de warmte-elementen onder alle omstandigheden krachtig genoeg om deze temperatuur vast te houden, zelfs als de omgevingstemperatuur slechts 18 graden is. Daarnaast wordt het in ons testlab (hopelijk) nooit warmer dan 35 graden, zodat we nooit lucht aanvoeren die warmer is. Bovendien is de aanwezigheid van enige warmte rondom de koeler realistisch, want in een echt systeem produceren andere componenten, zoals de voeding, het moederbord en de videokaart, ook warmte. De basistemperatuur moet niet te hoog worden, omdat we willen zien waartoe de cpu-koelers in staat zijn. Een omgevingstemperatuur van 35 graden is, zo hebben we ook in afzonderlijke tests voor behuizingen gezien, een representatieve weergave van de temperatuur in een echt systeem.
De warmtetest duurt na het opwarmen tien minuten. We hebben voor die tijdsduur gekozen omdat uit onze tests blijkt dat elke luchtkoeler dan zeker ‘verzadigd’ is en de doeltemperatuur voor onze test is bereikt. We meten de stand van zaken echter niet enkel op dat moment; de hele duurtest wordt gelogd, waarbij elke seconde een waarde wordt genoteerd. De temperatuur die we uiteindelijk rapporteren, is het 98e percentiel van de hele log. Kort gezegd gooien we de hoogste 2 procent van de gelogde waarden weg om incidentele uitschieters uit de analyse te houden. De hoogste temperatuur van de resterende 98 procent van de waarnemingen is het 98e percentiel. Dit percentiel sluit naar ons idee beter aan bij het doel van de duurtest dan het noteren van een eventuele kortstondige maximumtemperatuur.