Onderzoekers van de Universiteit van Pennsylvania hebben een nieuw materiaal ontdekt, Carbon nanotubes, de beste warmtegeleider bekend bij de mensheid. De toepassing van deze warmtegeleider bij computerchips kan het warmte probleem van huidige chips elimineren. Ook zijn er toepassingen te bedenken binnen (electro-) motoren, onderdelen van plastic behoren dan bijvoorbeeld tot de mogelijkheden :
PHILADELPHIA -- New research from the University of Pennsylvania indicates that carbon nanotubes, filaments of pure carbon less than one ten-thousandth the width of a human hair, may be the best heat-conducting material man has ever known. The findings suggest that these exotic strands, already heralded for their unparalleled strength and unique ability to adopt the electrical properties of either semiconductors or perfect metals, may someday also find applications as miniature heat conduits in a host of devices and materials.
[...] Carbon nanotubes' newfound ability to conduct heat suggests applications far beyond those that call on their strength and electrical conductivity, said Dr. Johnson, an assistant professor of physics at Penn. As computing power has skyrocketed, the infinitesimal heat generated by each circuit on a microchip has proved a headache for computer designers and manufacturers, who have few ways to dissipate the considerable heat that results from millions of circuits operating in tandem. Next-generation computer designs might circumvent this problem with judiciously placed carbon nanotubes to direct heat away from sensitive circuitry.
[...] Heat energy in nanotubes is carried by sound waves; in materials that are optimal conductors of heat, these waves move very rapidly in an essentially one-dimensional direction. Drs. Fischer and Johnson found that sound waves bearing thermal energy travel straight down individual carbon nanotubes at roughly 10,000 meters per second, behavior consistent with superior thermal conductivity. But they also unexpectedly determined that even when carbon nanotubes are bundled together -- like individual filaments welded together into the giant cables that support suspension bridges -- the bonds between the individual nanotubes remain so weak that heat essentially doesn't transcend them.
Bedankt [ti] voor de tip!