
University of Amsterdam

System & Network Engineering

Security in mobile banking
December 23, 2012

Authors:
Thijs Houtenbos
Jurgen Kloosterman
Bas Vlaszaty
Javy de Koning

Security in mobile banking

Abstract

The goal of the research described in this paper is to find out how the se-
curity used in Android based mobile banking applications is implemented.
While monitoring the network traffic and an initial review of the source code
from the most popular Android banking applications, the decision was made
to focus entirely on the application released by ABN AMRO [1]. In order
to find out what data was exchanged, the source code of the application
was modified and a new APK file was created which now directs data to a
valid SSL domain different from www.abnamro.nl before the data is sent to
www.abnamro.nl. Fortunately, it became clear that the application accepts
the new domain, therefore constituting a classic man in the middle attack.
With the configuration in place, the next step was to inspect and understand
the messages which are being sent when the user starts the application and
enters a pin number. By assuming that multiple challenges all consist of the
same structure, each containing a RSA public key, an idea was launched to
encrypt the data with our own RSA public key. The response could then
be decrypted using the private key, which gave the actual data. The main
conclusions are that both SSL, RSA and exchange of challenges all depend
on careful implementation, and that our recommendations having been im-
plemented by ABN AMRO to further improve end user security.

Security in mobile banking

Contents

1. Introduction 1
1.1. Focus on Android . 1
1.2. Focus on ABN AMRO . 2
1.3. Research questions . 3

2. Introduction to the ABN AMRO application 4

3. Traffic inspection 5

4. Decompiling the Application 6

5. Man in the middle attack 7

6. HTTP Traffic inspection 8
6.1. Challenge . 8

7. File system caching 10
7.1. Profile Database . 10
7.2. Caching Database . 11

8. Memory analysis 11
8.1. Android SDK . 12
8.2. Dumping the memory . 12
8.3. Analyzing the dump . 12
8.4. Results . 12
8.5. Threat of an attack . 13

9. Proof of Concept 14

10.Security remarks 16
10.1. Verification of SSL certificate . 16
10.2. Implementation of RSA . 16
10.3. E.dentifier codes . 16

11.Conclusion 17

12.Future work 18
12.1. Patched Application . 19

A. Acronyms i

B. Bibliography ii

C. Contribution iii

Security in mobile banking

D. Traffic inspection set up using WireShark iii

E. HTTP Session iv

Security in mobile banking

1. Introduction

Nowadays almost everyone owns a smart-phone. We use smart-phones to call, text,
listen to music, update social media, and so forth. Current developments such as Near
Field Communication will even enable us to make payments with our phone. As part of
a service to customers, several banks in the Netherlands developed mobile applications
to enable customers to manage their bank accounts. All major banks currently have
a smart phone app available in the Apple Appstore[3] or in the Google Play store[4].
These apps can be used to view account balance and history, but more important is the
fact that an end user can initiate a transaction no matter where he or she is. Some of
the applications allow users to set a private pincode to use as a means of authentication.
And because the usage of these applications is exceeding the use of the banking website
[2], security becomes even more important. This is also the reason why we would like
to find out what the security features are that application developers in modern mobile
banking applications have implemented.

Figure 1: Android market share 3Q2012. Published by IDC on November 2nd, 2012

1.1. Focus on Android

The decision was made to focus entirely on applications for Android as this continu-
ously developed, open platform has the greatest market share (75%)1 when compared
to other existing mobile operating systems. The number of activated Android based
mobile phones have risen considerable in recent years and this popularity can also be
noticed from the enormous amount of applications available at the Google Play Store

1http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012/

q3-2012-smartphones/

1

Security in mobile banking

and very notable the development of third party custom Android operating systems such
as Cyanogenmod2. As end users are given the chance of developing their own Android
application, it has become moderately easy to install new applications and to locate and
decompile existing ones from a so-called ”rooted” device. And as anyone can submit an
application to the Google Play store, apps with malware are therefore no exception.

1.2. Focus on ABN AMRO

Given the fact that there was only a limited amount of time available for this research
project, it was clear that we would have have to focus our research. There was simply
not enough time to thorougly investigate the applications of all three major banks in
the Netherlands. To make an informed decision on which application to research further
we first spent some time decompiling all of them. How this was done is described in
chapter 4. We also tried to make some simple adjustments to them, recompile them,
and run the new applications in an emulator. The experience of those tests were used
as the basis for the decision which application to focus on. The applications and their
observations are listed below.

• ABN AMRO

– Application decompiled well. Quite readable code, structure of the applica-
tion could be easily identified from the source. Code could be adapted and
run without problems.

• ING

– Application decompiled well. Code not very readable, obfuscated method
names, structure quite difficult to make out.

• Rabobank

– Decompiled poorly, completly obfuscated code which gave us no insight in
the application’s internal workings.

Given these initial results, the decision was made to first investigate the ABN AMRO
application, because it looked the most promising.

2http://www.cyanogenmod.org/

2

Security in mobile banking

1.3. Research questions

In our research we want to answer the following research question.

• What is the current state of security implementations in Android banking applica-
tions?

Other sub-questions for this research are given below and these cooperate to answer the
primary research question.

• In what way do applications set up and maintain communications and how is traffic
protected from eavesdropping?

• What personal information is stored by mobile banking apps, and how is it pro-
tected?

• What information is available in memory when the app is running, and can we
extract that information?

3

Security in mobile banking

2. Introduction to the ABN AMRO application

To use the ABN AMRO mobile banking application, users need to activate their bank
account within the application when they execute the application for the first time. The
activation must be verified with an e.dentifier[5] challenge-response number and after
that a 5-digit Personal Identification Number (PIN) is chosen by the user to get access
to the banking account. Both the account and card number are stored in the application
cache so to use the application the user only has to enter a PIN number. Multiple bank
accounts can also be accessed from the application menu. The basic features of the
application are comparable to that of the ABN AMRO web site, but are limited as the
following short list shows. This comes as no surprise given the purpose of the application.

1. View account balance and transaction history

2. Set a daily limit between EUR 0,- and EUR 750,-

3. Transfer any amount below the daily limit to ”known” accounts3 with the PIN-code

4. Transfer a maximum of EUR 3000,- per transaction with e.dentifier verification to
any account

5. Transfer a maximum of EUR 250.000,- between own accounts with the PIN-code

Figure 2: ABN AMRO Bankieren application on Android

3Known accounts are bankaccounts where money has been transferred to in the past 18 months from
this account

4

Security in mobile banking

3. Traffic inspection

Although we suspect that communication with the bank website will be transferred over
a secured SSL-connection we will inspect the traffic to verify if this is true. To inspect
the traffic we’ve set up a laptop with two network interface cards.

1. Intel PRO Wireless 3945ABG 4

2. TP-Link TL-WN422G 5

The Intel network card is used to connect to an access point connected with the internet
and the TP-Link Network Interface Card (NIC) is used as an access point for the Android
device. Traffic is then routed through the laptop which we will use to inspect the traffic.
We used Droidwall 6 on the Android phone to prevent other applications from accessing
internet resources. Droidwall is an Android frontend for the popular iptables Linux
firewall. By only whitelisting the network traffic from the mobile banking application
we were able to filter out the traffic produced by other applications. From a technical

Figure 3: Wireshark traffic capture.

point of view, we will now describe the steps that were executed when the app is started.
The app initially does an A-record DNS query lookup for www.abnamro.nl, which is
answered with the DNS response which contains the IP-address 167.202.214.30. From
then on multiple TLS handshakes are sent between different source and destination ports,
after which encrypted data is exchanged. Our lab configuration is further explained in
appendix D.

4http://www.intel.com/products/wireless/prowireless_mobile.htm
5http://www.tp-link.com/en/products/details/?model=TL-WN422G
6http://code.google.com/p/droidwall/

5

Security in mobile banking

4. Decompiling the Application

There are several tools available which can be used to convert Android Package Files
(APK) to a somewhat human readable format. The most popular ones give an output
in Java and a special format called Smali. We used the following tools:

• dex2jar - http://code.google.com/p/dex2jar/

• jd-gui - http://java.decompiler.free.fr/?q=jdgui

• apktool - http://code.google.com/p/android-apktool/

dex2jar is a tool to convert Android dex files to Java class files, both binary formats.

jd-gui is a graphical tool that can displays Java source code from Java class files. Because
of the decompilation the output is not perfect and can be hard to read but it can
still give a good impression about what operations are executed in a section of
code.

apktool is a tool to reverse-engineer and modify binary Android applications. It can
decompile the application to smali format. The big advantage here is that the
application can be reconstructed from these smali files, which allows to modify
and recompile it.

The traffic inspection showed us that the application was using SSL/TLS to communicate
with the bank servers. To be able to look inside the traffic we modified the base URL
used in the application which is used to construct the request URL for the various
actions.

1 .field public static final DEFAULT_SERVER_URL:String; = "

https ://www.abnamro.nl/"

We changed this to the address of a server in our control and recompiled the APK with
this change included. Because we own the domain name of the new destination we were
able to request a valid SSL-certificate for this address and present it to the application
on connecting. We forwarded the requests we received towards the real ABN-AMRO
servers so we could look for any additional security features inside the SSL-connection.

6

Security in mobile banking

5. Man in the middle attack

A man in the middle (MiTM) attack is a form of active eavesdropping in which an
attacker creates connections to the victim’s phone and the bank’s website and relays
the messages between them. Our first attempt to perform a MiTM attack succeeded
using our modified application. As part of our research we also investigated how the
application handles invalid certificates. We wanted to include subject to be complete in
our research, but did not expect to do any findings here since other banks recently had
related problems. 7.

We used our own DNS-server to let the original application from the Play Store connect
to our own server when resolving the www.abnamro.nl domainname. Our first test
concluded of a self-signed certificate with a matching hostname (CN). The application
behaved like expected in this test. It showed the user an error that mobile banking is
not available at the moment and stops the connection process. In our second test we
presented an SSL-certificate which was correctly signed by a trusted Certificate Authority
(CA) but where the hostname (CN) in the certificate does not match the name of the
requested site. The application did not handle this test as expected. No user warning was
displayed and it continued the connection as if the real bank server had been contacted.
This means we could now perform a MiTM attack on the mobile banking application by
only redirecting the user traffic to our own server. There are several attacks available
for this on local or remote networks such as DNS-spoofing8 or ARP poisoning9.

Figure 4: SSL-certificate validation as displayed in a webbrowser

When using a webbrowser for Internet banking from a standard PC the user is dis-
played a green bar next to the URL in all modern browsers to indicate a valid and
Extended Validated (EV) certificate is used (Figure 4). The Dutch Society of Banks
(NVB) even had a large campaign to educate users to check among others the certificate
of the bank when doing online banking10. Because the mobile application handles all
connectivity without user interaction, the user has no way of checking the connection is
indeed with the real bank server as is possible in browsers.

7http://www.eenvandaag.nl/binnenland/40032/mobiel_bankieren_ing_maandenlang_onveilig
8http://en.wikipedia.org/wiki/DNS_spoofing
9http://en.wikipedia.org/wiki/ARP_spoofing

10http://www.3xkloppen.nl/over-3xkloppen/

7

Security in mobile banking

6. HTTP Traffic inspection

After the application is started it first does a request for any news messages. When the
user does an attempt to login the 5-digit PIN-code must be entered. The application
then requests a token at the server and includes the account- and card number in the
request. If the account- and card number are valid the bank sends a challenge back to
the client (Figure 5).

6.1. Challenge

Figure 5: Challenge in TLV (Type, Length, Value) format.

With the help of the decompiled application we were able to identify the challenge as
a hex encoded Type, Length, Value (TLV) format which includes the following items.

• Random data (8 bytes, marked in blue)

• Unix timestamp (4 bytes, marked in orange)

• RSA Public key (256 bytes, marked in red)

• RSA Exponent (3 bytes, marked in pink)

Next to the challenge itself a challengeHandle is included which is probably used to
identify which RSA public key was sent to the client. The challengeHandle changes every
time the RSA key is changed.

The plain challengeHandle is included with the subsequent login request together with
the account number and card number. There is also a 512 hex digit response in the login
request. If the login attempt is successful then the server includes a session identifier
cookie in the reply to the client which is from then on used in every request from the
client. All further traffic between the client and server except the authorization of a
payment with the PIN-code is sent through the SSL-tunnel without further encryption.

8

Security in mobile banking

We suspected the login response was RSA encrypted data since we already found a
2048-bit RSA public key was being transmitted to the application and the response had
a length of exactly that size. Since we do not have access to the private key part of the
public key we were unable to decrypt the payload. We do consider RSA to be secure at
this time so did not look into breaking the algorithm, instead we wanted to focus on the
implementation. One thing we thought would be worth trying was to replace the public
key part with our own generated RSA public key, for which we also have the private key
in our possession.

We replaced the original RSA public key from the bank server with our own key in
the challenge. We then captured the encrypted response and tried to decrypt it with
our private key. This indeed worked as expected and allowed us to look at the content
of the response which we identifier as the following data:

• Header (1 byte)

• Random data (8 bytes)

• Unix timestamp (4 bytes)

• User Id (13 bytes)

• Secret (PIN-code) (5 bytes)

The PIN-code here is the actual PIN-code setup and entered by the user to authenti-
cate against the account and can now be retrieved in plaintext with this attack.

Figure 6: Communication between Bankieren app and ABN AMRO

9

Security in mobile banking

7. File system caching

Android phones give the user access to two locations to save files. These locations are:

1. ”/emmc”: This is the internal memorycard.

2. ”/sdcard” or ”/sd-ext”: This is the swappable memorycard.

We are interested in the data that the application writes to the storage. This data is
usually placed in either one of the following partitions:

1. ”/data” Also called user data, the data partition contains the contacts, messages,
settings and apps that are installed. Erasing the data partition performs a factory
reset of the device. The data we are looking for is probably located in this partition.

2. ”/cache” This is the partition where Android stores frequently accessed data and
app components. Wiping the cache doesn’t effect the personal data but simply
gets rid of the existing data there, which gets automatically rebuilt as you con-
tinue using the device.

7.1. Profile Database

After setting up the ABN AMRO application we noticed the directory ”/data/data/-
com.abnamro.nl.mobile.payments/databases/” got populated with 2 database files. The
first one is the ”profiles.db” database file which stores unencrypted account data. From
this file we were able to read the bank account number and the card number which was
setup in the application. We have replaced the account number with ”123456789” and
the cardnumber with ”123” in the example below.

Listing 1: Profile database

1 sqlite > .databases

2 seq name file

3 0 main /data/data/com.abnamro.nl.mobile.

payments/databases/profiles.db

4 sqlite > .tables

5 abn_profile android_metadata

6

7 sqlite > PRAGMA table_info(abn_profile);

8 0| counter|INTEGER |0||0

9 1| alias|TEXT |0||0

10 2| account_nr|INTEGER |0||0

11 3| card_nr|INTEGER |0||0

10

Security in mobile banking

12 4| is_private_banker|INTEGER |0||0

13 5| image_hash|TEXT |0||0

14 6| image_data|BLOB |0||0

15

16 sqlite > select * from abn_profile;

17 58||123456789|123|0||

7.2. Caching Database

The second file, ”cache.db”, is a little more complicated. This file is created when the
application retrieves the transaction history in a logged in session. When the user closes
the application or when there is a 15 minute timeout the file gets deleted automatically.
We examined this database and the data is encrypted with AES-128 bit encryption. The
key is randomly generated every time the database is created.

Listing 2: 128bit AES encrypted transactions database

1 sqlite > .tables

2 MUTATIONS_4914862_1091039688 android_metadata

3

4 sqlite > PRAGMA table_info(MUTATIONS_4914862_1091039688);

5 0|_id|INTEGER |0||1

6 1| position|INTEGER |0||0

7 2|data|BLOB |0||0

8

9 sqlite > select * from MUTATIONS_4914862_1091039688;

10 1| -20|(encrypted data blob)

11 ...

8. Memory analysis

One other area of attack we explored is the possibility to gain access to sensitive infor-
mation through inspection of the application’s memory heap. The application saves all
data in the RAM, so we looked at the possibility of directly extracting the data from
there.

To investigate if this was possible we used tools from the Android SDK 11. In particular
we used the android emulator to run the application. Then we used the Dalvik Debug
Monitor Server (DDMS) to make a dump of the active application memory. After that
Eclipse’s Memory Analyser Tool (MAT) was used to analyse the memory dump and
investigate if there was any sensitive data for us to extract.

11http://developer.android.com/sdk/index.html

11

Security in mobile banking

8.1. Android SDK

Setting up the emulator to run the Android application is very straightforward. By
installing the Android SDK and running the emulator it was possible to just install the
application and run it.

8.2. Dumping the memory

With the application running in the emulator the next step is to dump the memory to
a file. To do this, we use the DDMS from the Android SDK.

To be able to do a thorough analysis of the memory, two different memory dumps
where made. One before the user is logged into the application, and one just after
the user is logged in. The idea is that possibly by looking at the differences of the two
dumps, it would be possible to more easily find the newly stored variables, like passwords
or other sensitive data.

After making the dump, it is necessary to convert the memory dump into a format
that can be read by the memory analyzer tool. To do this, hprof-conv is used. This tool
converts a .hprof dump into the necessary file format and is part of the Android SDK.

8.3. Analyzing the dump

Now we have a complete dump of the memory, MAT was used to analyze the memory. In
MAT it is possible to browse through all the Java objects, and their contents. This way
it is possible to for instance read the values of all String objects used by the application.
It is also possible to use OQL-queries on the dump to select and filter through instances
of all objects. 12 13

8.4. Results

Analysis of the dumps yielded moderate results. Things we found:

• The 5-digit PIN-code

• Accountbalance

• Accountnumber

• Session identifier

Things we looked for but did not manage to find:

• Key for encrypted cache database

• RSA key

12http://en.wikipedia.org/wiki/Object_Query_Language
13http://help.eclipse.org/indigo/index.jsp?topic=2\%Forg.eclipse.mat.ui.help\

%2Freference\%2Foqlsyntax.html

12

Security in mobile banking

Given the fact that we did not have any previous experience with memory analysis,
we consider this a reasonable result. Perhaps with more experience and skill in this area
it would be possible to also extract the encryption keys from memory, but given the time
and our capabilities we did not manage to do that.

The things we have found are still quite concerning. The 5 digit PIN-code is used
to transfer money to known associates, for amounts within the daily limit. It is also
used for the transfer of money between for instance savings accounts. This means that
with knowledge of this pincode an attacker could potentially transfer small amounts of
money, typically up to 500,-, to his account, provided the victim has transferred money
to this account before. This means it is not very realistic to exploit this on a large scale,
because the victim would probably need to know the attacker personally.

For the account balance and the account number the biggest problem is perhaps a
privacy concern. It is sloppy for an application to not handle information like this more
carefully, but it is not a real threat to security.

The fact that the session key can be captured makes it possible for an attacker to
request information about the account, like balance and past transfers. For any real
attacks on the account, like for instance transferring money, the attacker would need the
5 digit PIN-code. Another reason why this is not a major problem is that a session key
is only valid for 15 minutes. This means that would this be exploited, the attacker would
have access to account information for a maximum duration of 15 minutes. Using the
5 digit PIN-code this would also be possible, therefore the added value for an attacker
of having the session key is limited. As with the account balance and account number,
the major concern here is privacy. Information about past transfers should be strictly
confidential.

8.5. Threat of an attack

To perform an attack like this in practice, an attacker would first need to get a memory
dump from the victim’s phone. In ”Acquisition and analysis of volatile memory from
Android devices” 14 the writers propose a method of dumping the memory of a rooted
Android phone. This shows that it is possible, though still difficult, to acquire such
a memory dump. When an attacker has a memory dump from the phone, the 5 digit
PIN-code is the most valuable piece of data the attacker will try to recover. When he
has access to this, there are a number of things he can do:

• View account data

• Transfer an amount up to the daily maximum amount to a known account number

For the first attack the only risk is privacy. The confidentiality of your account can not
be guaranteed. The second attack is potentially a much bigger security risk, because of
the possibility to transfer money. However there are two restrictions in place:

• Daily limit is set to some value between EUR 0,- and EUR 750,-, so larger trans-
actions are not possible without the e.dentifier verification.

14http://www.sciencedirect.com/science/article/pii/S1742287611000879

13

Security in mobile banking

• It is only possible to transfer to an account number that is ’known’, meaning that
a previous transfer to that account number has to have been made. In other words,
before an attack can take place, the victim has to have transferred money to the
attacker in a previous transaction.

Considering these limitations, the potential of using this attack on a large scale is very
limited.

9. Proof of Concept

To test our findings we executed a man in the middle attack on the application when
connected to our own wireless network. We setup a DNS server on this network which
resolved www.abnamro.nl to an IP-address of our MiTM server. The server presents an
SSL-certificate which is correctly signed by a trusted CA for another domain name (CN)
(Section 5).

On the MiTM server we run a custom build script which accepts the SSL-connections
and forwards the requests to the real www.abnamro.nl server. The script rewrites the
RSA public key in the challenge response with our own public key and forwards that
back to the application (Figure 7).

When the application sends a login request with the encrypted PIN code the script
can decrypt this with our own private key, retrieve the plain PIN-code and re-encrypt
the data with the original public key from the bank. The re-encrypted data is again
forwarded to the real bank server which can then validate the details and start an
authenticated session if they are correct. At this point we have all the details needed to
perform a login on the user’s account (accountnumber, cardnumber, pin) and are still in
the middle of the current user session.

The rest of the session does not have any further encryption except for the SSL-session
itself. This means we can read the account balance, transaction history and any payment
requests.

Encryption is again used in the same way as in the login process when a transaction
is authenticated with the PIN-code. But we can do the same trick with the RSA key
here since it does a new request for the public key first before sending the encrypted
message.

Because we are also able to see any payment requests we tried to see if we can alter
the destination of the transfer to a different bank accountnumber. To hide this from the
user we can setup our attack in such a way that it only changes the transaction when
the user already expects the e.dentifier needs to be used to verify the transaction. We
can do this by forwarding the original transfer request to the bank, and only change the
transaction if the bank indicates the e.dentifier verification is needed. Since there is no
relation between the e.dentifier code and the amount or destination of the transaction,
and because the application cannot verify if the current e.dentifier code is actually linked
to the requested transaction, the user has no way of knowing that he is in fact authorizing
our altered payment.

14

Security in mobile banking

Figure 7: Proof of concept setup

But we believe most users will also enter an e.dentifier response when requested to
do so when they do not expect this. Our reasoning is that the user trusts the banking
application to be secure and will enter the code when requested to do so. If we take this
into account in the attack we can alter every payment the user initiates.

We could have even gone one step further and keep a history of real and altered
transactions, which we can use to change the transaction history between the bank and
the application, so that the altered transactions are hidden from the user and the original
transaction is shown. This will keep the user from knowing about the attack until the
account is checked without our interference.

In our proof of concept we demonstrated that our theory works. We can read all
the details needed to login on the user’s account and gather even more information
like account balance and history. We can alter payment requests and get the user to
authenticate them while hiding this from the user until a safe network is used. All this is
done by only having the mobile device running the application connected to a network
where we can alter the DNS-record or take over the default gateway.

15

Security in mobile banking

10. Security remarks

In this paragraph we will point out our concerns regarding the security of the application.
We will also explain how we feel that security could be improved.

10.1. Verification of SSL certificate

The first, and probably most important issue we found is that the hostname of the SSL
certificate is not validated. When the application connects to https://www.abnamro.nl

it downloads the encryption key part of the security key with the certificate and the
application uses that to encrypt all messages being passed back to the server. The
content is unable to be converted back into readable text without the decryption key
which remains in the security certificate stored on the server so that the server hosting
the site is the only place where that content can be decrypted.

To secure the communication, you have to be sure that you are communicating with
a ”trusted” source whose identity you can be sure of. The application does validate
the SSL certificate but it does not verify that the SSL certificate matches the hostname
for www.abnamro.nl. This makes it possible to do a man-in-the-middle attack, you are
encrypting traffic but you are not sure who you are encrypting it for.

10.2. Implementation of RSA

The application uses a 2048 bit RSA key to encrypt the communication between the
phone and the server. This key is rolled over multiple times a day and the public key
is sent from the server to the client in a challenge. RSA recommends a key size of 2048
bits to keep data confidential until at least 2030. They predict that a 10 million dollar
machine will need approximately 5 months to factor out a 2048 bit RSA key in the year
2030. 15

Rolling this key over that much does not improve the security of the application. We
feel it would be safer to include one, or multiple public keys within the application. That
way the traffic cannot be intercepted when a man in the middle attack is performed.

10.3. E.dentifier codes

The e.dentifier codes are used to verify the transaction. However there is no known
visible relationship with the between the transaction and the codes used. A user is not
able to see if the data has been tampered with and will verify the modified transaction.
To improve security another validation number could be used. For example a validation
number based on:

1. The total amount of money you would like to transfer.

2. The account number where you are transferring money to.

Building in these checks would make easy for the user to spot a malformed transaction.

15http://www.rsa.com/rsalabs/node.asp?id=2004

16

Security in mobile banking

Figure 8: Incorrect certificate in webbrowser

11. Conclusion

In this paper, we have presented methods that obtain information about either the
information that is being saved on a mobile device and the communication between that
device and the infrastructure of the bank. Initially, we were very skeptical about the
feasability of this project, but that changed after did our first discovery. This project
shows that although the specification of security features in an application on itself
should be sufficient, but the implementation of the actual application that is being used
by around 500.000 end-users in the Netherlands is in fact not.
When we started with the project we were quickly able to find out how the traffic is
communicated. Later we found out that the traffic is apparently not so secure due to
an problem in the implementation of checking the validity of the SSL certificate. By
setting up a rogue access point it therefore became possible to effectively eavesdrop the
traffic and find out valuable data such as bank and card number and more importantly,
the pin number. Based on this information, we were able to create a proof of concept in

17

Security in mobile banking

which the actual payment request was modified in transit.
The information stored on the device should be protected in a way that if your phone
is stolen it should be able to find any useful information. We were able to find some
important data by obtaining a memory dump and we think that it is concerning regarding
end user privacy, but not very realistic to be actually exploited in a large scale and the
victim should have made previous payments to the attacker.
We therefore think that is reasonable to conclude that the current state of security
implementations in Android mobile banking applications definitely needs improvement.
Either if it is because of end user privacy or the proof of concept we discussed in this
paper, security in Android applications should definitely be improved with regard to the
expectation of an explosion of Android malware in 2013 and beyond.

12. Future work

A recent publication released by ESET 16 predicts that malware developed for Android
will rise explosively in 2013 and it leaves no imagination that developers should adapt
secure programming practices in the most sensible way. Given the fact that anyone is
in the position to develop and submit an Android app to the Google Play Store, the
process of adding a newly developed app to the Google Play Store is easy compared to
the cycle one has to complete before an app is accepted in the iTunes App Store. 17

Coupled with the fact that the default Android antivirus application needs refinement
18, we think that future work should primarily consist of secure programming practices
developers and a more strict evaluation on the side of the Google Play Store. With
regards to the application discussed in this paper, we also think that there should be a
standard practice for the use of certificates in Android applications, as we expect that
our findings are certainly not limited to this particular case.

16http://go.eset.com/us/resources/white-papers/Trends_for_2013_preview.pdf
17http://mobiledevices.about.com/od/additionalresources/a/Ios-App-Store-Vs-Google-Play-Store-For-App-Developers.

htm
18http://www.av-test.org/fileadmin/pdf/avtest_2012-02_android_anti-malware_report_

english.pdf

18

Security in mobile banking

12.1. Patched Application

On Tuesday December 18th, 2012, only four days after being informed about the issue,
ABN AMRO released a new version of the Android Application in the Google Play store,
patching the issues described in this paper.

Figure 9: Application update in the Play Store

19

Security in mobile banking

A. Acronyms

AES Advanced Encryption Standard

APK Android application PacKage file

CA Certificate Authority

CN Canonical Name

DDMS Dalvik Debug Monitor Server

DEX Dalvik Executable

EMMC External Multi Media Card

EV Extended Validation

HTTP HyperText Transport Protocol

JAR Java ARchive

MITM Man In The Middle

RSA Ron Rivest, Adi Shamir and Leonard Adleman

SDK Software Development Kit

SQL Server Query Language

SSL Secure Sockets Layer

UvA Universiteit van Amsterdam

i

Security in mobile banking

B. Bibliography

References

[1] ABN AMRO ABN AMRO Bank N.V. is a Dutch state-owned bank with
headquarters in Amsterdam. It was re-established, in its current form, in
2009 following the acquisition and break-up of the original ABN AMRO
by a banking consortium consisting of Royal Bank of Scotland Group,
Santander Group and Fortis. Following the collapse of Fortis, the acquirer
of the Dutch business, it was nationalized by the Dutch government along
with Fortis Bank Nederland.
https://www.abnamro.nl

[2] Application usage statistics: On November 9th, 2012 ING reported
that their mobile banking app exceeded the use of their web-application.
More then a million customers are using the mobile application.
http://webwereld.nl/nieuws/112415/ingmobiel-bankieren-wint-van

-internetbankieren.html

[3] Apple App Store apps:
https://itunes.apple.com/nl/app/rabo-bankieren

https://itunes.apple.com/nl/app/ing-bankieren

https://itunes.apple.com/nl/app/mobiel-bankieren

[4] Android Playstore apps:
https://play.google.com/store/apps/details?id=com.abnamro.

nl.mobile.payments

https://play.google.com/store/apps/details?id=com.ing.mobile

https://play.google.com/store/apps/details?id=nl.rabomobiel

[5] E.dentifier: Device used in combination with your bankcard to generate
an access code. De e.dentifier is een paslezer waarmee u toegang krijgt tot
bijvoorbeeld Internet Bankieren en Telefonisch Bankieren. De e.dentifier2
is de opvolger van de e.dentifier.

ii

Security in mobile banking

C. Contribution

Thijs Houtenbos Scripting, SSL man in the middle, demo, challenge cracking, report

Javy de Koning Lab setup, traffic inspection, presentation, challenge cracking, report

Jurgen Kloosterman Lab setup, traffic inspection, report

Bas Vlaszaty Memory analyzing, source code inspection, report

D. Traffic inspection set up using WireShark

Install and enable both network cards while using the default drivers. Then open a
Command Prompt in Windows 7 with Administrator privileges and execute the following
commands specifying the SSID of the secondary network card and a password for the
Android phone to authenticate to.

Listing 3: 128bit AES encrypted transactions database

1 netsh wlan set hostednetwork mode=allow ssid=<ssid_name > key

=<password > keyUsage=temporary

2 netsh wlan start hostednetwork

Next configure the settings of the primary adapter to share the Internet connection
(Internet Connection Sharing, ICS) and also to restrict the traffic to HTTP/HTTPS.
Then start Wireshark and select the secondary interface and start to capture network
packets. In some occassions Wireshark generates an error when the WinPcap driver
(called NPF) can’t be initiated. This can be fixed with the following commands:

Listing 4: 128bit AES encrypted transactions database

1 sc qc npf

2 sc start npf

References: 19 20 21 22

19http://www.wireshark.org/
20http://ask.wireshark.org/questions/1281/npf-driver-problem-in-windows-7
21http://www.melbpc.org.au/pcupdate/3006/3006article8.htm
22http://wiki.wireshark.org/CaptureSetup/CapturePrivileges

iii

Security in mobile banking

E. HTTP Session

Listing 5: 128bit AES encrypted transactions database

1 ===

2

3 GET /session/loginchallenge?accessToolUsage=SOFTTOKEN&

accountNumber =123456789& cardNumber =123 HTTP /1.1

4 Content -Type: application/json;charset=UTF -8

5 Accept -Language: en

6 User -Agent: [Bankieren]/[3.0.1] [Samsung]/[GT -I9100] [

Android]/[4.1.2] [null] [] []

7 Host: www.abnamro.nl

8 Connection: Keep -Alive

9 Cookie: LBCSS=

10 000

11 0a000

12 000

13 000

14 Cookie2: $Version =1

15

16 HTTP /1.1 200 OK

17 Date: Thu , 22 Nov 2012 12:00:37 GMT

18 Server: IBM_HTTP_Server

19 Expires: 0

20 Last -Modified: Thu , 22 Nov 2012 12:00:37 GMT

21 Pragma: no -cache

22 Content -Length: 730

23 Set -Cookie: LBCSS=

24 000

25 0a02000

26 000

27 000; Path=/

28 Cache -Control: no-store , no -cache=set -cookie

29 Keep -Alive: timeout =15, max =95

30 Connection: Keep -Alive

31 Content -Type: application/json

32 Content -Language: en -US

33

34 {" loginChallenge ":{" userId ":"0123456789 _12"," challenge

":"020008

ebdac96801d257f103000450ae13e5040100d9c166061a8d097c006f}

35

36 ===

iv

Security in mobile banking

37

38 PUT /session/loginresponse HTTP /1.1

39 Content -Type: application/json;charset=UTF -8

40 Accept -Language: en

41 User -Agent: [Bankieren]/[3.0.1] [Samsung]/[GT -I9100] [

Android]/[4.1.2] [null] [] []

42 Content -Length: 703

43 Host: www.abnamro.nl

44 Connection: Keep -Alive

45 Cookie: LBCSS=

46 000

47 0a02000

48 000

49 000

50 Cookie2: $Version =1

51

52 {" accountNumber ":123456789 ," cardNumber ":123 ," challengeHandle

":"1331699728" ," response ":"872

f1b0fe850a7c2341fc133840ad4c *"

53 HTTP /1.1 500 Internal Server Error

54 Date: Thu , 22 Nov 2012 12:00:38 GMT

55 Server: IBM_HTTP_Server

56 Expires: 0

57 Last -Modified: Thu , 22 Nov 2012 12:00:38 GMT

58 Pragma: no -cache

59 Cache -Control: no-store

60 Content -Length: 197

61 X-Cnection: close

62 Content -Type: application/json

63 Content -Language: en -US

64

65 {" messages ":[{" messageKey ":" MESSAGE_SEC02L_S_0030",

66 "params ":null ," messageType ":" ERROR"," messageText ":"

67 The identification code entered is incorrect. Please enter

68 the correct identification code ."}]}

v

